223 research outputs found

    Hopping magneto-transport via nonzero orbital momentum states and organic magnetoresistance

    Full text link
    In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s-states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m > 0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered pi-conjugated organic materials (OMAR).Comment: 4 pages, 3 figure

    Ground state properties of ferromagnetic metal/conjugated polymer interfaces

    Full text link
    We theoretically investigate the ground state properties of ferromagnetic metal/conjugated polymer interfaces. The work is partially motivated by recent experiments in which injection of spin polarized electrons from ferromagnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to describe the conjugated polymer and one-dimensional tight-binding models to describe the ferromagnetic metal. We consider both a model for a conventional ferromagnetic metal, in which there are no explicit structural degrees of freedom, and a model for a half-metallic ferromagnetic colossal magnetoresistance (CMR) oxide which has explicit structural degrees of freedom. The Fermi energy of the magnetic metallic contact is adjusted to control the degree of electron transfer into the polymer. We investigate electron charge and spin transfer from the ferromagnetic metal to the organic polymer, and structural relaxation near the interface. Bipolarons are the lowest energy charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian. As a result electrons (or holes) transferred into the bulk of the polymer form spinless bipolarons. However, there can be spin density in the polymer localized near the interface.Comment: 7 figure

    Manganite/Alq3 interfaces investigated by impedance spectroscopy technique

    Get PDF
    With the general objective of studying interfaces between ferromagnetic materials and organic semiconductors, we report ac impedance investigations on La0.7Sr0.3MnO3 (LSMO)/tris(8-hydroxyquinoline)aluminium (Alq3)/Al and Indium Tin Oxide (ITO)/Alq3/Al heterostructures, in the frequency range between 20 Hz and 1 MHz. The comparison of the equivalent circuits deduced to fit the experimental ac responses allows isolating a specific RC contribution which can be attributed to the LSMO/Alq3 interface region. Using the information obtained from our ac measurements, we propose a model which fits the temperature dependence of the magnetoresistance in spin valves combining LSMO electrodes and Alq3 layers
    • …
    corecore